个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
杨朝阳,首都医科大学教授,博导。长期从事应用组织工程学方法修复中枢神经系统损伤研究,在《PNAS》、《Nature STTT》、《Biomaterials》等期刊上发表论文多篇。主持完成多项国家级课题,研发出具有长时程缓释功能的生物活性材料支架,使得向靶组织长期递送生物活性分子成为可能国际上首次证明激活成年内源性神经发生修复大鼠完全性脊髓损伤,利用全基因转录组分析揭示了分子机制;国际上首次应用生物活性材料支架诱导高等灵长类-恒河猴皮质脊髓束长距离再生修复脊髓损伤;采用生物活性材料支架成功修复成年脑损伤。获“2018年高等学校科学研究优秀成果-自然科学一等奖”,“2018年中华医学会-医学科学技术三等奖”,“2012年全国百篇优秀博士学位论文”。
1. 激活内源性神经干细胞重建功能性的Ⅰ-Ⅵ层皮层细胞构筑修复成年脑皮层损伤。国自然项目(2023.01-2026.12)
2. 活性生物材料激活内源性神经发生修复成年恒河猴创伤性脑损伤的机理研究。国自然面上项目(2020.01-2023.12)
3. 建立脊髓损伤及再生的基因诊断标准和脊髓瘢痕定位软件研制。国家重点研发计划项目(2017.07-2021.12)
4. 生物材料支架激活内源性神经干细胞修复陈旧性脊髓损伤的机理研究。国自然面上项目(2017.01-2020.12)
5. 活性生物材料诱导内源性干细胞修复脑损伤的机理及应用研究。北京市科学技术委员会北京市科技计划项目(2018.01-2021.12)
6. NT-3-生物材料支架激活成年慢性脊髓损伤后的内源性神经发生的研究。北京市教育委员会科技计划重点项目(2018.01-2020.12)
1. Duan, H. et al. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res 19, 409-415, doi:10.4103/1673-5374.375344 (2024).
2. Wang, Z. et al. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 220, 102375, doi:10.1016/j.pneurobio.2022.102375 (2023).
3. Mu, J. et al. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab, 271678X231179544, doi:10.1177/0271678X231179544 (2023).
4. Liu, X. et al. Regeneration and functional recovery of the completely transected optic nerve in adult rats by CNTF-chitosan. Signal Transduct Target Ther 8, 81, doi:10.1038/s41392-022-01289-0 (2023).
5. Hao, F. et al. Proper wiring of newborn neurons to control bladder function after complete spinal cord injury. Biomaterials 292, 121919, doi:10.1016/j.biomaterials.2022.121919 (2023).
6. Feng, T. et al. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience 26, 106784, doi:10.1016/j.isci.2023.106784 (2023).
7. Bao, X.-X. et al. Recognition of necrotic regions in MRI images of chronic spinal cord injury based on superpixel. Comput Methods Programs Biomed 228, 107252, doi:10.1016/j.cmpb.2022.107252 (2023).
8. Bai, T. et al. Neuronal differentiation and functional maturation of neurons from neural stem cells induced by bFGF-chitosan controlled release system. Drug Deliv Transl Res 13, 2378-2393, doi:10.1007/s13346-023-01322-x (2023).
9. Zhao, C. et al. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct Target Ther 7, 184, doi:10.1038/s41392-022-01010-1 (2022).
10. Rao, J.-S. et al. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys. Ann Med 54, 1867-1883, doi:10.1080/07853890.2022.2089728 (2022).
11. Liu, F.-D. et al. Biomimetic chitosan scaffolds with long-term controlled release of nerve growth factor repairs 20-mm-long sciatic nerve defects in rats. Neural Regen Res 17, 1146-1155, doi:10.4103/1673-5374.324860 (2022).
12. Lian, W. et al. Distribution Heterogeneity of Muscle Spindles Across Skeletal Muscles of Lower Extremities in C57BL/6 Mice. Front Neuroanat 16, 838951, doi:10.3389/fnana.2022.838951 (2022).
13. Tian, T., Yang, Z. & Li, X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 238, 489-507, doi:10.1111/joa.13309 (2021).
14. Liu, F. et al. bFGF-chitosan scaffolds effectively repair 20 mm sciatic nerve defects in adult rats. Biomed Mater 16, 025011, doi:10.1088/1748-605X/abd9dc (2021).
15. Tian, T. & Li, X. Applications of tissue clearing in the spinal cord. Eur J Neurosci 52, 4019-4036, doi:10.1111/ejn.14938 (2020).
16. Wei, R.-H. et al. Neuromuscular control pattern in rhesus monkeys during bipedal walking. Exp Anim 68, 341-349, doi:10.1538/expanim.18-0180 (2019).
17. Shang, J. et al. bFGF-Sodium Hyaluronate Collagen Scaffolds Enable the Formation of Nascent Neural Networks After Adult Spinal Cord Injury. J Biomed Nanotechnol 15, 703-716, doi:10.1166/jbn.2019.2732 (2019).
18. Rao, J.-S. et al. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 48, 320-328, doi:10.1111/jmp.12422 (2019).
19. Oudega, M. et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp Neurol 312, 51-62, doi:10.1016/j.expneurol.2018.11.003 (2019).
20. Zhao, C. et al. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury. Magn Reson Imaging 47, 25-32, doi:10.1016/j.mri.2017.11.009 (2018).
21. Xie, Y. et al. Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci China Life Sci 61, 559-568, doi:10.1007/s11427-017-9217-2 (2018).
22. Wei, R.-H. et al. The kinematic recovery process of rhesus monkeys after spinal cord injury. Exp Anim 67, 431-440, doi:10.1538/expanim.18-0023 (2018).
23. Rao, J.-S. et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A 115, E5595-E5604, doi:10.1073/pnas.1804735115 (2018).
24. Zhao, C. et al. Combination of kinematic analyses and diffusion tensor tractrography to evaluate the residual motor functions in spinal cord-hemisected monkeys. J Med Primatol 46, 239-247, doi:10.1111/jmp.12276 (2017).
25. Rao, J.-S. et al. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 43, 144-150, doi:10.1016/j.mri.2017.07.025 (2017).
26. Li, J. et al. Structural and metabolic changes in the traumatically injured rat brain: high-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 59, 1203-1212, doi:10.1007/s00234-017-1915-y (2017).
27. Hao, P. et al. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 140, doi:10.1016/j.biomaterials.2017.04.014 (2017).
28. Zhao, C. et al. Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats. Neuroradiology 58, 607-614, doi:10.1007/s00234-016-1660-7 (2016).
29. Wei, R.-H. et al. Influence of walking speed on gait parameters of bipedal locomotion in rhesus monkeys. J Med Primatol 45, 304-311, doi:10.1111/jmp.12235 (2016).
30. Gao, Y., Yang, Z. & Li, X. Regeneration strategies after the adult mammalian central nervous system injury-biomaterials. Regen Biomater 3, 115-122, doi:10.1093/rb/rbw004 (2016).
31. Duan, H. et al. Endogenous neurogenesis in adult mammals after spinal cord injury. Sci China Life Sci 59, 1313-1318 (2016).
32. Duan, H. et al. Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Acta Biomater 45, 182-195, doi:10.1016/j.actbio.2016.08.043 (2016).
33. Yang, Z. et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 112, 13354-13359, doi:10.1073/pnas.1510194112 (2015).
34. Rao, J.-S. et al. Alteration of brain regional homogeneity of monkeys with spinal cord injury: A longitudinal resting-state functional magnetic resonance imaging study. Magn Reson Imaging 33, 1156-1162, doi:10.1016/j.mri.2015.06.011 (2015).
35. Duan, H. et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 112, 13360-13365, doi:10.1073/pnas.1510176112 (2015).
36. Rao, J.-S. et al. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study. Magn Reson Imaging 32, 482-486, doi:10.1016/j.mri.2014.02.001 (2014).
37. Yang, Z., Qiao, H., Sun, Z. & Li, X. Effect of BDNF-plasma-collagen matrix controlled delivery system on the behavior of adult rats neural stem cells. J Biomed Mater Res A 101, 599-606, doi:10.1002/jbm.a.34331 (2013).
38. Rao, J.-S. et al. Diffusion tensor tractography of residual fibers in traumatic spinal cord injury: a pilot study. J Neuroradiol 40, 181-186, doi:10.1016/j.neurad.2012.08.008 (2013).
39. Yang, Z., Qiao, H. & Li, X. Effects of the CNTF-collagen gel-controlled delivery system on rat neural stem/progenitor cells behavior. Sci China Life Sci 53, 504-510, doi:10.1007/s11427-010-0093-5 (2010).
40. Yang, Z., Mo, L., Duan, H. & Li, X. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells. Sci China Life Sci 53, 215-222, doi:10.1007/s11427-010-0036-1 (2010).
41. Yang, Z., Duan, H., Mo, L., Qiao, H. & Li, X. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 31, 4846-4854, doi:10.1016/j.biomaterials.2010.02.015 (2010).
42. Mo, L., Yang, Z., Zhang, A. & Li, X. The repair of the injured adult rat hippocampus with NT-3-chitosan carriers. Biomaterials 31, 2184-2192, doi:10.1016/j.biomaterials.2009.11.078 (2010).
43. Li, X., Yang, Z., Zhang, A., Wang, T. & Chen, W. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials 30, 1121-1132, doi:10.1016/j.biomaterials.2008.10.063 (2009).
44. Li, X., Yang, Z. & Zhang, A. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 30, 4978-4985, doi:10.1016/j.biomaterials.2009.05.047 (2009).
文件上传中...