
杨朝阳,首都医科大学教授,博导。长期从事应用组织工程学方法修复中枢神经系统损伤研究,在《PNAS》、《Nature STTT》、《Biomaterials》等期刊上发表论文多篇。主持完成多项国家级课题,研发出具有长时程缓释功能的生物活性材料支架,使得向靶组织长期递送生物活性分子成为可能国际上首次证明激活成年内源性神经发生修复大鼠完全性脊髓损伤,利用全基因转录组分析揭示了分子机制;国际上首次应用生物活性材料支架诱导高等灵长类-恒河猴皮质脊髓束长距离再生修复脊髓损伤;采用生物活性材料支架成功修复成年脑损伤。获“2018年高等学校科学研究优秀成果-自然科学一等奖”,“2018年中华医学会-医学科学技术三等奖”,“2012年全国百篇优秀博士学位论文”。
1. 激活内源性神经干细胞重建功能性的Ⅰ-Ⅵ层皮层细胞构筑修复成年脑皮层损伤。国自然项目(2023.01-2026.12)
2. 活性生物材料激活内源性神经发生修复成年恒河猴创伤性脑损伤的机理研究。国自然面上项目(2020.01-2023.12)
3. 建立脊髓损伤及再生的基因诊断标准和脊髓瘢痕定位软件研制。国家重点研发计划项目(2017.07-2021.12)
4. 生物材料支架激活内源性神经干细胞修复陈旧性脊髓损伤的机理研究。国自然面上项目(2017.01-2020.12)
5. 活性生物材料诱导内源性干细胞修复脑损伤的机理及应用研究。北京市科学技术委员会北京市科技计划项目(2018.01-2021.12)
6. NT-3-生物材料支架激活成年慢性脊髓损伤后的内源性神经发生的研究。北京市教育委员会科技计划重点项目(2018.01-2020.12)
1. Duan, H. et al. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res 19, 409-415, doi:10.4103/1673-5374.375344 (2024).
2. Wang, Z. et al. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 220, 102375, doi:10.1016/j.pneurobio.2022.102375 (2023).
3. Mu, J. et al. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab, 271678X231179544, doi:10.1177/0271678X231179544 (2023).
4. Liu, X. et al. Regeneration and functional recovery of the completely transected optic nerve in adult rats by CNTF-chitosan. Signal Transduct Target Ther 8, 81, doi:10.1038/s41392-022-01289-0 (2023).
5. Hao, F. et al. Proper wiring of newborn neurons to control bladder function after complete spinal cord injury. Biomaterials 292, 121919, doi:10.1016/j.biomaterials.2022.121919 (2023).
6. Feng, T. et al. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience 26, 106784, doi:10.1016/j.isci.2023.106784 (2023).
7. Bao, X.-X. et al. Recognition of necrotic regions in MRI images of chronic spinal cord injury based on superpixel. Comput Methods Programs Biomed 228, 107252, doi:10.1016/j.cmpb.2022.107252 (2023).
8. Bai, T. et al. Neuronal differentiation and functional maturation of neurons from neural stem cells induced by bFGF-chitosan controlled release system. Drug Deliv Transl Res 13, 2378-2393, doi:10.1007/s13346-023-01322-x (2023).
9. Zhao, C. et al. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct Target Ther 7, 184, doi:10.1038/s41392-022-01010-1 (2022).
10. Rao, J.-S. et al. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys. Ann Med 54, 1867-1883, doi:10.1080/07853890.2022.2089728 (2022).
11. Liu, F.-D. et al. Biomimetic chitosan scaffolds with long-term controlled release of nerve growth factor repairs 20-mm-long sciatic nerve defects in rats. Neural Regen Res 17, 1146-1155, doi:10.4103/1673-5374.324860 (2022).
12. Lian, W. et al. Distribution Heterogeneity of Muscle Spindles Across Skeletal Muscles of Lower Extremities in C57BL/6 Mice. Front Neuroanat 16, 838951, doi:10.3389/fnana.2022.838951 (2022).
13. Tian, T., Yang, Z. & Li, X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 238, 489-507, doi:10.1111/joa.13309 (2021).
14. Liu, F. et al. bFGF-chitosan scaffolds effectively repair 20 mm sciatic nerve defects in adult rats. Biomed Mater 16, 025011, doi:10.1088/1748-605X/abd9dc (2021).
15. Tian, T. & Li, X. Applications of tissue clearing in the spinal cord. Eur J Neurosci 52, 4019-4036, doi:10.1111/ejn.14938 (2020).
16. Wei, R.-H. et al. Neuromuscular control pattern in rhesus monkeys during bipedal walking. Exp Anim 68, 341-349, doi:10.1538/expanim.18-0180 (2019).
17. Shang, J. et al. bFGF-Sodium Hyaluronate Collagen Scaffolds Enable the Formation of Nascent Neural Networks After Adult Spinal Cord Injury. J Biomed Nanotechnol 15, 703-716, doi:10.1166/jbn.2019.2732 (2019).
18. Rao, J.-S. et al. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 48, 320-328, doi:10.1111/jmp.12422 (2019).
19. Oudega, M. et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp Neurol 312, 51-62, doi:10.1016/j.expneurol.2018.11.003 (2019).
20. Zhao, C. et al. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury. Magn Reson Imaging 47, 25-32, doi:10.1016/j.mri.2017.11.009 (2018).
21. Xie, Y. et al. Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci China Life Sci 61, 559-568, doi:10.1007/s11427-017-9217-2 (2018).
22. Wei, R.-H. et al. The kinematic recovery process of rhesus monkeys after spinal cord injury. Exp Anim 67, 431-440, doi:10.1538/expanim.18-0023 (2018).
23. Rao, J.-S. et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A 115, E5595-E5604, doi:10.1073/pnas.1804735115 (2018).
24. Zhao, C. et al. Combination of kinematic analyses and diffusion tensor tractrography to evaluate the residual motor functions in spinal cord-hemisected monkeys. J Med Primatol 46, 239-247, doi:10.1111/jmp.12276 (2017).
25. Rao, J.-S. et al. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 43, 144-150, doi:10.1016/j.mri.2017.07.025 (2017).
26. Li, J. et al. Structural and metabolic changes in the traumatically injured rat brain: high-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 59, 1203-1212, doi:10.1007/s00234-017-1915-y (2017).
27. Hao, P. et al. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 140, doi:10.1016/j.biomaterials.2017.04.014 (2017).
28. Zhao, C. et al. Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats. Neuroradiology 58, 607-614, doi:10.1007/s00234-016-1660-7 (2016).
29. Wei, R.-H. et al. Influence of walking speed on gait parameters of bipedal locomotion in rhesus monkeys. J Med Primatol 45, 304-311, doi:10.1111/jmp.12235 (2016).
30. Gao, Y., Yang, Z. & Li, X. Regeneration strategies after the adult mammalian central nervous system injury-biomaterials. Regen Biomater 3, 115-122, doi:10.1093/rb/rbw004 (2016).
31. Duan, H. et al. Endogenous neurogenesis in adult mammals after spinal cord injury. Sci China Life Sci 59, 1313-1318 (2016).
32. Duan, H. et al. Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Acta Biomater 45, 182-195, doi:10.1016/j.actbio.2016.08.043 (2016).
33. Yang, Z. et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 112, 13354-13359, doi:10.1073/pnas.1510194112 (2015).
34. Rao, J.-S. et al. Alteration of brain regional homogeneity of monkeys with spinal cord injury: A longitudinal resting-state functional magnetic resonance imaging study. Magn Reson Imaging 33, 1156-1162, doi:10.1016/j.mri.2015.06.011 (2015).
35. Duan, H. et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 112, 13360-13365, doi:10.1073/pnas.1510176112 (2015).
36. Rao, J.-S. et al. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study. Magn Reson Imaging 32, 482-486, doi:10.1016/j.mri.2014.02.001 (2014).
37. Yang, Z., Qiao, H., Sun, Z. & Li, X. Effect of BDNF-plasma-collagen matrix controlled delivery system on the behavior of adult rats neural stem cells. J Biomed Mater Res A 101, 599-606, doi:10.1002/jbm.a.34331 (2013).
38. Rao, J.-S. et al. Diffusion tensor tractography of residual fibers in traumatic spinal cord injury: a pilot study. J Neuroradiol 40, 181-186, doi:10.1016/j.neurad.2012.08.008 (2013).
39. Yang, Z., Qiao, H. & Li, X. Effects of the CNTF-collagen gel-controlled delivery system on rat neural stem/progenitor cells behavior. Sci China Life Sci 53, 504-510, doi:10.1007/s11427-010-0093-5 (2010).
40. Yang, Z., Mo, L., Duan, H. & Li, X. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells. Sci China Life Sci 53, 215-222, doi:10.1007/s11427-010-0036-1 (2010).
41. Yang, Z., Duan, H., Mo, L., Qiao, H. & Li, X. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 31, 4846-4854, doi:10.1016/j.biomaterials.2010.02.015 (2010).
42. Mo, L., Yang, Z., Zhang, A. & Li, X. The repair of the injured adult rat hippocampus with NT-3-chitosan carriers. Biomaterials 31, 2184-2192, doi:10.1016/j.biomaterials.2009.11.078 (2010).
43. Li, X., Yang, Z., Zhang, A., Wang, T. & Chen, W. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials 30, 1121-1132, doi:10.1016/j.biomaterials.2008.10.063 (2009).
44. Li, X., Yang, Z. & Zhang, A. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 30, 4978-4985, doi:10.1016/j.biomaterials.2009.05.047 (2009).
首都医科大学建校于1960年,是北京市重点高等院校,著名泌尿外科专家、中国科学院院士、中国工程院院士、原全国人大常委会副委员长吴阶平教授为首任院长。学校由校本部和附属医院(即临床医学院)组成。校本部设有基础医学院、生物医学工程学院、公共卫生与家庭医学学院、高等职业教育学院、中医药学院、顺义校区、继续教育学院、护理学院、卫生事业管理与发展学院及首都医科大学国际教学部;附属医院包括宣武医院(第一临床医学院)、附属北京友谊医院(第二临床医学院)、附属北京朝阳医院(第三临床医学院)、附属北京同仁医院(第四临床医学院)、附属北京天坛医院(第五临床医学院)、附属北京安贞医院(第六临床医学院)、附属北京口腔医院(口腔医学院)、附属北京儿童医院(儿科医学院)、附属北京妇产医院(妇产医学院)、附属北京安定医院(精神卫生学院)、附属复兴医院(第八临床医学院)、附属北京中医医院(中医药临床医学院)和康复医学院。
学校和附属医院现有教职员工和医护人员22575人。有院士4人,正高职称700余人,副高职称1800余人。学校学科专业齐全,学科力量雄厚,在基础和临床各专业拥有一大批具有很高造诣的专家学者,现有3个国家级重点学科,有38个博士学位授予权学科,58个硕士学位授予权学科和2个博士后科研流动站。
校本部和附属医院总占地面积97.3万平方米,总建筑面积134万平方米 ,固定资产总值近46.5亿元,图书馆藏书108.3万册 ,住院病床10039张。学校开办的七年制专业中设有临床医学和口腔医学;五年制专业中设有临床医学、口腔医学、预防医学、护理学、中医学等;四年制专业中设有生物医学工程、中药学和康复治疗学。在临床医学专业中设有儿科医学、康复医学、医学影像、精神卫生与精神病学和医学检验5个专业方向;在生物医学工程专业中设有医学影像设备与技术和听力学专业方向。高等职业教育设有护理、医学检验、药学、医学影像技术、康复技术、口腔修复工艺、眼科验光、实验动物技术、中医学、中药制剂、医学信息、临床医学、预防医学、中药经营贸易和中医学美容专业方向15个专业。首都医科大学现已成为以培养高层次本科生与研究生为核心、以临床应用型人才为主和培养预防、康复、生物医学工程和医学基础各学科、各层次人才,位于全国先进医学院校行列的高等学府。
学校具有较强的学术发展与科研实力,在校本部和附属医院建有一批国家级和市级重点学科和重点实验室,建有高水平的国家级或市级研究和培训机构,如卫生部全科医学培训中心、临床医学研究所、基础医学研究所、神经科学研究所、眼科研究所、老年病医疗研究中心、泌尿外科研究所、心肺血管医疗研究中心、生命科学院、卫生毒理检测中心、生物工程技术研究中心、祖国医学研究所、临床疾病研究中心、中医肝病临床研究中心、生殖医学研究所、心血管疾病临床试验及社区干预中心和北京市卫生政策与卫生经济研究中心等。神经生物学、细胞生物学、电生理学、基础免疫学、实验寄生虫学、医学图像处理、生物医学、信息检测与处理、神经内科、神经外科、心脏内外科、肾移植、呼吸和消化内科、口腔颌面外科、眼科、耳鼻咽喉科、小儿血液病等领域在国内外享有较高声誉,很多学科的研究和医疗水平已经达到或接近国际先进水平。
学校十分重视对外交流与合作,改革开放以来,先后与世界20多个国家和地区签定了友好交流协议, 近十年中,先后接待美国、加拿大、英国、澳大利亚、法国、瑞典、日本、荷兰、意大利、德国、丹麦及台湾、香港和澳门等50多个国家和地区的专家学者8000余人次来校进行学术交流和参观访问。同时,学校积极选送教师、科研人员和管理干部出国进修、参加学术会议和考察访问。