个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
2005年毕业于首都医科大学,之后一直在首都医科大学附属北京儿童医院影像中心任职,现为主任医师,副教授,2023年被评为硕士生导师
北京儿童医院影像中心现有儿科影像学博士研究生导师1名,硕士研究生导师3名。
1. 北京市医院管理中心, 培育项目, PX2022050, 儿童双低CTA保持肺隔离症灵敏度的诊断准确性试验, 2022-01 至 2024-12, 15.0万元, 在研, 主持
2. 首都医科大学,2021校培育(自然类)基金,PYZ21140,H2708儿童低剂量CT图像纹理的研究以及扫描方案体系的建立,2022/01-2022/12, 5.0,主持
3. 新疆维吾尔自治区科技厅,新疆维吾尔自治区自然科学基金面上项目,2022D01A306,基于双能CT的人工智能算法建立儿童神经母细胞瘤手术预后模型的研究 新疆维吾尔自治区儿童医院 2022/01-2025/12, 10.0,主持
4. 北京市优秀人才培养资助青年骨干个人项目,2014000021469G240,应用结合呼吸控制的胸部MR扫描方法评价儿童漏斗胸NUSS手术前后胸廓运动功能和肺容积变化的分析研究,2014/12-2016/12,5万元,已结题,主持
5. 首都医科大学校自然基金,PYZ2017026,儿童闭塞性细支气管炎血流灌注演变规律的能谱CT定量研究,2018/01-2018/12,5万元,已结题,主持
6. 首都临床特色应用研究,Z141107002514005,儿童血管CT成像中低对比剂浓度和低剂量技术的优化方案设置和临床推广应用研究,2014/06-2017/03,127.5万元,已结题,参与
发表文章:
1. Sun J, Li H, Li H, Li M, Gao Y, Zhou Z, Peng Y.Application of deep learning image reconstruction algorithm to improve imagequality in CT angiography of children with Takayasu arteritis. J Xray SciTechnol. 2022;30(1):177-184. doi: 10.3233/XST-211033. PMID: 34806646.
2. Sun J, Li H,Yang L, Zhou Z, Li M, Peng Y. Application of 70 kVp in abdominal CT angiographyto reduce both radiation and contrast dosage and improve patient comfort forchildren. J Xray Sci Technol. 2021;29(5):813-821. doi: 10.3233/XST-210896.PMID: 34151881.
3. Sun J, Li H, Li J, Cao Y, Zhou Z, Li M, Peng Y. Performance evaluation ofusing shorter contrast injection and 70 kVp with deep learning imagereconstruction for reduced contrast medium dose and radiation dose in coronaryCT angiography for children: a pilot study. Quant Imaging Med Surg. 2021Sep;11(9):4162-4171. doi: 10.21037/qims-20-1159. PMID: 34476196; PMCID:PMC8339656.
4. Sun J, Li H, Gao J, et al.Performance evaluation of a deep learning image reconstruction (DLIR) algorithmin "double low" chest CTA in children: a feasibility study. RadiolMed. 2021 Sep;126(9):1181-1188.
5. Sun J, Li H, Wang B, et al.Application of a deep learning image reconstruction (DLIR) algorithm in head CTimaging for children to improve image quality and lesion detection. BMC MedImaging. 2021 Jul 8;21(1):108.
6. Sun J, Li H, Li J, et al. Improvingthe image quality of pediatric chest CT angiography with low radiation dose andcontrast volume using deep learning image reconstruction. Quant Imaging MedSurg. 2021 Jul;11(7):3051-3058.
7. Sun J, Yang LX, Zhou ZF, et al. Performance evaluationof two iterative reconstruction algorithms, MBIR and ASIR, in low radiationdose and low contrast dose abdominal CT in children. Radiol Med.2020 Oct;125(10):918-925.
8. Sun J, Okerlund D, Cao Y, et al. Further Improving ImageQuality of Cardiovascular Computed Tomography Angiography for Children WithHigh Heart Rates Using Second-Generation Motion Correction Algorithm. J Comput Assist Tomogr. 2020;44(5):790-795.
9. Sun J, Zhang Q, Zhou Z, et al. Optimal tube voltage forabdominal enhanced CT in children: a self-controlled study. Acta Radiol. 2020;61 (1) :101-109.
10. Sun J, Zhang Q, Hu D, et al. Feasibility study of usingone-tenth mSv radiation dose in young children chest CT with 80 kVp andmodel-based iterative reconstruction. Sci Rep. 2019 Aug 28;9(1):12481.
11. Sun J, Hu D, Shen Y, et al. Improving image quality withmodel-based iterative reconstruction algorithm for chest CT in children withreduced contrast concentration. Radiol Med. 2019 Jul;124(7):595-601.
12. Sun J, Zhang Q, Duan X, et al. Application of a fullmodel-based iterative reconstruction (MBIR) in 80 kVp ultra-low-dose paranasalsinus CT imaging of pediatric patients. Radiol Med. 2018 Feb;123(2):117-124.
13. 孙记航, 段晓岷, 于彤, 李昊岩, 彭芸. 儿童CT扫描辐射剂量现状调查和诊断参考水平的初步探讨[J]. 中华放射学杂志,2022,10:1135-1140.
14. 孙记航, 杨利新, 唐晓璐, 李昊岩, 彭芸. 应用深度学习图像重建算法提升多发性大动脉炎患儿增强CT血管壁测量精度的研究. 中华放射学杂志.2021,55(12): 1308-1312.
社会任职:
1. 中华医学会儿科学会影像学组第一届青年委员会副组长
2. 北京医学会放射学分会第十二届委员会第一届青年委员会委员
3. 中国医学影像技术编委
4. 临床小儿外科杂志审稿专家
5. 医疗装备杂志审稿专家
专著:
1. 孙记航,贾永军,郭辰,等,儿科CT诊断,科学出版社,143千字,2020.04
文件上传中...