个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
现任首都医科大学北京脑重大疾病研究院低氧适应医学研究平台副教授,首都医科大学神经生物学专业硕士生导师,2021年北京市科技新星。
现从事低氧参与脑损伤的分子机制及干预研究,着重关注低氧应激诱导损伤的细胞异质性,间歇性低氧治疗方案在低氧或缺血损伤中的干预效果及机制。主要发现包括:①建立低氧应激下全身多脏器单细胞转录图谱,揭示低氧应激诱导的器官及细胞异质性,发现低氧特异性诱导的新型免疫调节细胞;②明确间歇性低氧适应改善脑血管微循环的作用,筛选出最佳的间歇性低氧干预方案,并确定其在缺血性脑卒中、慢性低氧损伤等模型上的神经保护作用;③揭示慢性低氧诱导神经损伤的分子机制,发现低氧通过HIF-2α依赖性机制,诱导帕金森病病理标志物α-突触核蛋白异常改变及神经损伤;④明确低氧应激在帕金森病发病过程中的推动作用并揭示内在机制。
担任SCI杂志CNS Neuroscience & Therapeutics编委,Frontiers in Aging Neuroscience客座主编,Neurobiology of Disease等杂志审稿人,中国神经科学学会神经退行性疾病分会委员,中国神经科学学会神经科学研究技术分会委员,心血管病精准医学分会委员,中国神经修复学会青年委员。主持国家自然科学基金青年项目,参与北京市自然科学基金重点项目、国家重点研究发展计划、国家自然科学基金面上项目等。荣获第十九届北京青年学术演讲比赛二等奖,北京市优秀毕业生,首都医科大学优秀博士论文等。以第一作者或通讯作者身份共参与发表SCI 论文近20篇,主要成果发表在Autophagy、Cell Death & Disease等杂志上。
低氧适应医学研究实验室,以低氧医学为主要研究方向,对低氧/缺血损伤的分子机制、低氧/缺血适应的保护机制及低氧/缺血适应在脑重大疾病的防治中的作用等领域展开深入研究。本团队在吉训明教授的领导下,提出无创性“上肢远隔缺血适应脑保护”理念;通过啮齿类和非人灵长类动物模型研究,揭示了上肢远隔缺血适应多靶点协同调控的“外周保护中枢”的机制。在临床应用研究方面,成功研制出具有我国自主知识产权的肢体远隔缺血适应治疗仪,并已经在健高危人群和心脑血管病人的防治方面进行了系统深入研究。
1. 北京市自然科学基金青年项目
HIF-1α/STOML2/ PGAM5信号通路调控线粒体自噬在神经元低氧响应中的作用及机制研究
项目编号:32100925
项目金额:30万
项目起止日期:202201-202412
2. 北京市科技新星
血管新生在间歇性低氧防治缺血性脑卒中中的作用及机制研究
项目编号:Z211100002121038
项目金额:36万
项目起止日期:202111-202411
1. Guan Y#, Liu J#, Gu Y, Ji X*. 2022. Effects of hypoxia on cerebral microvascular angiogenesis: Benefits or damages? Aging and Disease. In press. DOI: 10.14336/AD.2022.0902. IF: 9.968
2. Li G, Guan Y, Gu Y, Guo M, Ma W, Shao Q, Liu J, Ji X*. 2022. Intermittent hypoxic conditioning restores neurological dysfunction induced by long-term hypoxia. CNS Neurosci Ther. In press. DOI: 10.1111/cns.13996. IF: 7.035
3. Chen M#, Liu J#, Luo H#, Duan C, Gao G, Yang H*. 2022. Increase in membrane surface expression and phosphorylation of TRPC3 related to olfactory dysfunction in α-synuclein transgenic mice. J Cell Mol Med. 26(19):5008-5020. IF: 5.295
4. Guo M, Ji X*, Liu J*. 2022. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci. 14:919343. IF: 5.702
5. Tian Z, Ji X*, Liu J*. 2022. Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. Int J Mol Sci. 23(11):6224. IF: 6.208
6. Liu W, Zhang Q, Xing H, Gao G, Liu J, Huang Y, Yang H*. 2022. Characterization of a Novel Monoclonal Antibody for Serine-129 Phosphorylated α-Synuclein: A Potential Application for Clinical and Basic Research. Front Neurol. 13:821792. IF: 4.086
7. Liu J#, Gu Y#, Guo M, Ji X*. 2021. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther. 27(8):869-882. IF: 7.035
8. Li G#, Liu J#, Guan Y, Ji X. 2021. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther. 27(12):1446-1457. IF: 7.035
9. Li R#, Lu Y#, Zhang Q, Liu W, Yang R, Jiao J, Liu J, Gao G, Yang H*. 2021. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy. 18(3):559-575. IF: 13.391
10. Liu J, Liu W, Yang H*. 2019. Mitophagy in Parkinson's Disease: From Pathogenesis to Treatment. Cells. 12;8(7):712. IF: 7.666
11. Liu J, Liu W, Lu Y, Tian H, Duan C, Lu L, Gao G, Wu X, Wang X, Yang H*. 2018. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy. 14(5):845-861. IF: 13.391
12. Liu J, Liu W, Yang H*. 2018. Balancing apoptosis and autophagy for Parkinson’s disease therapy: targeting BCL-2. ACS Chemical Neuroscience. 10(2):792-802. IF: 5.78
13. Tian H, Lu Y, Liu J, Liu W, Lu L, Duan C, Gao G, Yang H*. 2018. Leucine Carboxyl Methyltransferase Downregulation and Protein Phosphatase Methylesterase Upregulation Contribute Toward the Inhibition of Protein Phosphatase 2A by α-Synuclein. Front Aging Neurosci. 10: 173. IF: 5.702
14. Yang W#, Wang X#, Liu J#, Duan C, Gao G, Lu L, Yu S, Yang H*. 2018. PINK1 suppresses alpha-synuclein-induced neuronal injury: a novel mechanism in protein phosphatase 2A activation. Oncotarget. 9(1): 37-53.
15. Liu J#, Wang X#, Lu Y, Duan C, Gao G, Lu L, Yang H*. 2017. Pink1 interacts with alphasynuclein and abrogates alpha-synuclein-induced neurotoxicity by activating autophagy. Cell Death Dis. 8(9): e3056. IF: 9.685
16. Chen M, Liu J, Lu Y, Duan C, Lu L, Gao G, Chan P, Yu S, Yang H*. 2017. Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial TRPC3 in the brains of monkeys and mice. J Neural Transm (Vienna). 124(4): 441-453. IF: 3.85
17. Liu J, Chen M, Wang X, Wang Y, Duan C, Gao G, Lu L, Wu X, Wang X, Yang H*. 2016. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model. Oncotarget. 7(38): 60823-60843.
18. Wang Y, Liu J, Chen M, Du T, Duan C, Gao G, Yang H*. 2016. The novel mechanism of rotenone-induced alpha-synuclein phosphorylation via reduced protein phosphatase 2A activity. Int J Biochem Cell Biol. 75: 34-44. IF: 5.652
19. Wang H, Liu J, Gao G, Wu X, Wang X, Yang H*. 2016. Protection effect of piperine and piperlonguminine from Piper longum L. alkaloids against rotenone-induced neuronal injury. Brain Res. 1639: 214-227. IF: 3.352
20. Zhang H, Liu J, Wang X, Duan C, Wang X, Yang H*. 2016. V63 and N65 of overexpressed alpha-synuclein are involved in mitochondrial dysfunction. Brain Res. 1642: 308-318. IF: 3.352
文件上传中...