个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
李晓光,首都医科大学、北京航空航天大学双聘教授,博导,生物材料与神经再生北京市重点实验室主任。国家基金委咨询专家,国家重点研发计划项目首席专家,国家自然科学基金重点项目、国家科技支撑计划、国家国际科技合作专项等国家重大项目的项目负责人。在国际著名期刊《PNAS》、《Nature STTT》、《Biomaterials》等发表论文多篇,获“2018年高等学校科学研究优秀成果-自然科学一等奖”,“2012年全国百篇优秀博士学位论文指导老师”。主要研究方向是应用组织工程学方法修复中枢神经系统损伤的机理和临床应用研究。研究内容包括脑损伤修复、脊髓损伤修复、视神经损伤修复、青光眼的治疗、渐冻症的治疗等研究。
1. 生物活性支架促进成年大鼠完全性脊髓损伤的神经环路重建。国自然项目(2023.01-2026.12)
2. 成年猕猴大鼠皮层运动区损伤模型构建及诱导内源神经干细胞修复研究。国家自然科学基金专项(2020.01--2022.12)
3. 激活内源性神经发生构建功能性神经网络修复猴脊髓损伤机制研究。国家自然基金重点项目(2018.01-2022.12)
4. 生物材料修复猴脊髓长距离损伤机理及产品研发。国家重点研发计划项目(2017.07-2021.12 )
5. 生物材料激活内源性神经干细胞修复陈旧性脊髓损伤。国家自然科学基金应急管理项目(2016.07--2018.12)
6. 生物活性支架诱导成年动物神经发生修复脊髓损伤的机理研究。国家自然科学基金国际(地区)合作研究项目(2014.01--2018.12)
1. Duan, H. et al. Activation of endogenous neurogenesis and angiogenesis by basic fibroblast growth factor-chitosan gel in an adult rat model of ischemic stroke. Neural Regen Res 19, 409-415, doi:10.4103/1673-5374.375344 (2024).
2 . Wang, Z. et al. Circuit reconstruction of newborn neurons after spinal cord injury in adult rats via an NT3-chitosan scaffold. Prog Neurobiol 220, 102375, doi:10.1016/j.pneurobio.2022.102375 (2023).
3. Mu, J. et al. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab, 271678X231179544, doi:10.1177/0271678X231179544 (2023).
4. Liu, X. et al. Regeneration and functional recovery of the completely transected optic nerve in adult rats by CNTF-chitosan. Signal Transduct Target Ther 8, 81, doi:10.1038/s41392-022-01289-0 (2023).
5. Hao, F. et al. Proper wiring of newborn neurons to control bladder function after complete spinal cord injury. Biomaterials 292, 121919, doi:10.1016/j.biomaterials.2022.121919 (2023).
6. Feng, T. et al. Different macaque brain network remodeling after spinal cord injury and NT3 treatment. iScience 26, 106784, doi:10.1016/j.isci.2023.106784 (2023).
7. Bao, X.-X. et al. Recognition of necrotic regions in MRI images of chronic spinal cord injury based on superpixel. Comput Methods Programs Biomed 228, 107252, doi:10.1016/j.cmpb.2022.107252 (2023).
8. Bai, T. et al. Neuronal differentiation and functional maturation of neurons from neural stem cells induced by bFGF-chitosan controlled release system. Drug Deliv Transl Res 13, 2378-2393, doi:10.1007/s13346-023-01322-x (2023).
9. Zhao, C. et al. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct Target Ther 7, 184, doi:10.1038/s41392-022-01010-1 (2022).
10. Rao, J.-S. et al. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys. Ann Med 54, 1867-1883, doi:10.1080/07853890.2022.2089728 (2022).
11. Liu, F.-D. et al. Biomimetic chitosan scaffolds with long-term controlled release of nerve growth factor repairs 20-mm-long sciatic nerve defects in rats. Neural Regen Res 17, 1146-1155, doi:10.4103/1673-5374.324860 (2022).
12. Lian, W. et al. Distribution Heterogeneity of Muscle Spindles Across Skeletal Muscles of Lower Extremities in C57BL/6 Mice. Front Neuroanat 16, 838951, doi:10.3389/fnana.2022.838951 (2022).
13. Tian, T., Yang, Z. & Li, X. Tissue clearing technique: Recent progress and biomedical applications. J Anat 238, 489-507, doi:10.1111/joa.13309 (2021).
14. Liu, F. et al. bFGF-chitosan scaffolds effectively repair 20 mm sciatic nerve defects in adult rats. Biomed Mater 16, 025011, doi:10.1088/1748-605X/abd9dc (2021).
15. Tian, T. & Li, X. Applications of tissue clearing in the spinal cord. Eur J Neurosci 52, 4019-4036, doi:10.1111/ejn.14938 (2020).
16. Wei, R.-H. et al. Neuromuscular control pattern in rhesus monkeys during bipedal walking. Exp Anim 68, 341-349, doi:10.1538/expanim.18-0180 (2019).
17. Shang, J. et al. bFGF-Sodium Hyaluronate Collagen Scaffolds Enable the Formation of Nascent Neural Networks After Adult Spinal Cord Injury. J Biomed Nanotechnol 15, 703-716, doi:10.1166/jbn.2019.2732 (2019).
18 . Rao, J.-S. et al. Image correction for diffusion tensor imaging of Rhesus monkey thoracic spinal cord. J Med Primatol 48, 320-328, doi:10.1111/jmp.12422 (2019).
19. Oudega, M. et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp Neurol 312, 51-62, doi:10.1016/j.expneurol.2018.11.003 (2019).
20. Zhao, C. et al. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury. Magn Reson Imaging 47, 25-32, doi:10.1016/j.mri.2017.11.009 (2018).
21. Xie, Y. et al. Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci China Life Sci 61, 559-568, doi:10.1007/s11427-017-9217-2 (2018).
22. Wei, R.-H. et al. The kinematic recovery process of rhesus monkeys after spinal cord injury. Exp Anim 67, 431-440, doi:10.1538/expanim.18-0023 (2018).
23. Rao, J.-S. et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A 115, E5595-E5604, doi:10.1073/pnas.1804735115 (2018).
24. Zhao, C. et al. Combination of kinematic analyses and diffusion tensor tractrography to evaluate the residual motor functions in spinal cord-hemisected monkeys. J Med Primatol 46, 239-247, doi:10.1111/jmp.12276 (2017).
25. Rao, J.-S. et al. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 43, 144-150, doi:10.1016/j.mri.2017.07.025 (2017).
26. Li, J. et al. Structural and metabolic changes in the traumatically injured rat brain: high-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 59, 1203-1212, doi:10.1007/s00234-017-1915-y (2017).
27. Hao, P. et al. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials 140, doi:10.1016/j.biomaterials.2017.04.014 (2017).
28. Zhao, C. et al. Longitudinal study on diffusion tensor imaging and diffusion tensor tractography following spinal cord contusion injury in rats. Neuroradiology 58, 607-614, doi:10.1007/s00234-016-1660-7 (2016).
29. Wei, R.-H. et al. Influence of walking speed on gait parameters of bipedal locomotion in rhesus monkeys. J Med Primatol 45, 304-311, doi:10.1111/jmp.12235 (2016).
30. Gao, Y., Yang, Z. & Li, X. Regeneration strategies after the adult mammalian central nervous system injury-biomaterials. Regen Biomater 3, 115-122, doi:10.1093/rb/rbw004 (2016).
31. Duan, H. et al. Endogenous neurogenesis in adult mammals after spinal cord injury. Sci China Life Sci 59, 1313-1318 (2016).
32. Duan, H. et al. Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Acta Biomater 45, 182-195, doi:10.1016/j.actbio.2016.08.043 (2016).
33. Yang, Z. et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 112, 13354-13359, doi:10.1073/pnas.1510194112 (2015).
34. Rao, J.-S. et al. Alteration of brain regional homogeneity of monkeys with spinal cord injury: A longitudinal resting-state functional magnetic resonance imaging study. Magn Reson Imaging 33, 1156-1162, doi:10.1016/j.mri.2015.06.011 (2015).
35. Duan, H. et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 112, 13360-13365, doi:10.1073/pnas.1510176112 (2015).
36. Rao, J.-S. et al. Fractional amplitude of low-frequency fluctuation changes in monkeys with spinal cord injury: a resting-state fMRI study. Magn Reson Imaging 32, 482-486, doi:10.1016/j.mri.2014.02.001 (2014).
37. Yang, Z., Qiao, H., Sun, Z. & Li, X. Effect of BDNF-plasma-collagen matrix controlled delivery system on the behavior of adult rats neural stem cells. J Biomed Mater Res A 101, 599-606, doi:10.1002/jbm.a.34331 (2013).
38. Rao, J.-S. et al. Diffusion tensor tractography of residual fibers in traumatic spinal cord injury: a pilot study. J Neuroradiol 40, 181-186, doi:10.1016/j.neurad.2012.08.008 (2013).
39. Yang, Z., Qiao, H. & Li, X. Effects of the CNTF-collagen gel-controlled delivery system on rat neural stem/progenitor cells behavior. Sci China Life Sci 53, 504-510, doi:10.1007/s11427-010-0093-5 (2010).
40. Yang, Z., Mo, L., Duan, H. & Li, X. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells. Sci China Life Sci 53, 215-222, doi:10.1007/s11427-010-0036-1 (2010).
41. Yang, Z., Duan, H., Mo, L., Qiao, H. & Li, X. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 31, 4846-4854, doi:10.1016/j.biomaterials.2010.02.015 (2010).
42. Mo, L., Yang, Z., Zhang, A. & Li, X. The repair of the injured adult rat hippocampus with NT-3-chitosan carriers. Biomaterials 31, 2184-2192, doi:10.1016/j.biomaterials.2009.11.078 (2010).
43. Li, X., Yang, Z., Zhang, A., Wang, T. & Chen, W. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats. Biomaterials 30, 1121-1132, doi:10.1016/j.biomaterials.2008.10.063 (2009).
44. Li, X., Yang, Z. & Zhang, A. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 30, 4978-4985, doi:10.1016/j.biomaterials.2009.05.047 (2009).
文件上传中...