个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
首都医科大学附属北京友谊医院耳鼻咽喉头颈外科教授 博士生导师;北京市临床医学研究所耳鼻咽喉头颈外科研究室主任;Hearing Research杂志客座主编,中华耳鼻咽喉头颈外科杂志编委,国家自然科学基金、北京市自然科学基金和首发基金审评专家,国家科技奖励评审专家,中国听力医学基金会基础研究专家委员会副主任委员;主持国家及省部级课题9项; 获得省部级科技进步奖3项,发明专利1项目,发表SCI论文60多篇,中文核心期刊论文40多篇。
本课题组依托首都医科大学听觉生理研究室、首都医科大学附属北京友谊医院以及首都医科大学基础科研平台。依托单位为国内著名的医疗机构,拥有高水平的科研队伍和丰富的科研资源。几十年来,依托单位在基础和临床医学科研领域取得了突出成绩,硕果累累。 首都医科大学听觉生理实验室坐落于首都医科大学基础科研大楼内,和医科大学基础科研平台天然融合,资源、设施和仪器设备完全共享。听觉生理研究室和首都医科大学基础科研平台拥有设备完善的听力学检测设备、动物行为学评估设施、膜片钳放大记录系统、以及分子生物学、细胞生物学、组织形态 学、神经电生理学等仪器设备,研究仪器先进、软件硬件设施配套齐全,完全可以满足本课题组研究工作的需要。此外,首都医科大学拥有国内一流的实验动 物中心,可提供符合多种研究需求的实验动物,可为本课题组实验研究的顺利实施提供强有力的物质保障。
1.主持本领域国家及省部级课题
1)国家自然科学基金面上项目 课题名称:炎性小体双向调控自噬效应失衡介导衰老耳蜗带状突触损害的机制与干预研究项目编号:82071037;直接费用:55.00万元,项目起止年月: 2021年01月 至 2024年12月
2)北京市科委-教委联合基金重点项目 课题名称:基于耳蜗传入神经突触损伤与修复的耳鸣发生分子机制研究及转基因干预 编号:KZ201810025040;资助费用:80万元,项目起止年月:2018年 01月至 2020年12月
3)国家自然科学基金面上项目 课题名称:腺病毒CRISP/Cas9系统介导在体修复OTOF突变听神经病小鼠耳蜗带状突触功能的研究.项目编号:81770997;直接费用:51.00万元,项目起止年月:2018年01月至 2021年 12月
2.参与项目
国家自然科学基金委员会重点项目 编号:81830030 题目:线粒体去乙酰化蛋白 SIRT3在噪声诱导的隐匿性听力损失中作用机制及干预研究 2019/01-2023/12,285万元,在研,参加,排序第二,项目主持:龚树生
1.北京市医管中心-扬帆计划3.0医工结合培育项目 课题名称:基于中耳递送治疗感音神经性聋的温控药载水凝胶技术及产品的研发和应用;项目起止年月:2024年-2026年,主持
2.国家自然科学基金面上项目 课题名称:噪声诱导耳蜗突触病的固有免疫记忆表征及机制研究;项目起止年月: 2024年01月 至 2027年12月,主持
3.北京市科委-教委联合基金重点项目 课题名称:耳蜗巨噬细胞介导噪声性听力损失过程中带状突触损害的机制研究 ,项目起止年月:2023年 01月至 2025年12月,主持
获奖
1. 辽宁省科学技术进步三等奖 项目名称:《耳蜗传入神经突触可塑性改变在耳聋发生过程中的作用及临床应用》 第一获奖人;2015
2. 辽宁省医学科技奖二等奖 项目名称:《药物性耳聋的发病机制和精准干预及人工耳蜗研发》 第二获奖人;2017
3. 辽宁省科学技术进步三等奖 项目名称:《药物性耳聋的发病机制和精准干预及人工耳蜗研发》 第二获奖人;2017
专利
专利名称:Otof 1273(C>T)基因定点突变的耳聋小鼠模型的构建方法及其应用。发明人:柳柯;时晰 专利权人:首都医科大学附属北京友谊医院
专利号:ZL 2021 1 0894148.4 专利申请日:2021年08月05日
授权公告日:2021年11月12日 授权公告号:CN 113337507 B
学术专刊
1.专辑题目:‘隐匿性听力损失和耳蜗带状突触病变’, 中华耳科学杂志,2019,执行主编。
2.专辑题目:‘Hearing Loss and Cognitive Disorders’, Frontiers in Neuroscience, 2022,客座主编。
发表论文(2019-至今)
英文
1.Yu, Q., Liu, S., Guo, R., Chen, K., Li, Y., Jiang, D., Gong, S., Yin, L., & Liu, K. (2024). Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid-co-glycolic acid)-Loaded Hydrogel. ACS Nano. 2024;18(8):6298-6313. doi:10.1021/acsnano.3c11049.
2.Qianru, Y., Teng, Q., Li, Y., Liu, S., Gong, S*., & Liu, K*. (2023). Noise-induced hearing loss reduces inhibitory neurotransmitter synthesis in ventral hippocampus and contributes to the social memory deficits of mice. Neurosci Lett. 2024;820:137592. doi:10.1016/j.neulet.2023.137592.
3.Liu, S., Yu, Q., Guo, R., Chen, K., Xia, J., Guo, Z., He, L., Wu, Q., Liu, L., Li, Y., Zhang, B., Lu, L., Sheng, X., Zhu, J., Zhao, L., Qi, H., Liu, K.*, & Yin, L*. (2023). A Biodegradable, Adhesive, and Stretchable Hydrogel and Potential Applications for Allergic Rhinitis and Epistaxis. Adv Healthc Mater. 2023;12(29):e2302059. doi:10.1002/adhm.202302059.
4.Long, Y., Wang, W., Liu, J., Liu, K.*, & Gong, S*. (2023). Effect of tinnitus on sound localization ability in patients with normal hearing. Brazilian journal of otorhinolaryngology, S1808-8694(23)00003-4. Advance online publication. https://doi.org/10.1016/j.bjorl.2023.01.003.
5.Long, Y., Wang, W., Liu, J., Liu, K.*, & Gong, S*. (2023). The interference of tinnitus on sound localization was related to the type of stimulus. Frontiers in neuroscience, 17, 1077455. https://doi.org/10.3389/fnins.2023.1077455
6.Song X, Li Y, Guo R, Yu Q, Liu S, Teng Q, Chen Z-R, Xie J, Gong S and Liu K (2022) . Cochlear resident macrophage mediates development of ribbon synapses via CX3CR1/CX3CL1 axis. Front. Mol. Neurosci. 15:1031278. doi: 10.3389/fnmol.2022.1031278
7. Liu Z, Luo Y, Guo R, et al. Head and neck radiotherapy causes significant disruptions of cochlear ribbon synapses and consequent sensorineural hearing loss. Radiother Oncol. 2022;173:207-214. doi:10.1016/j.radonc.2022.05.023.
8. Wu L, Chen M, Li M, et al. Oridonin alleviates kanamycin-related hearing loss by inhibiting NLRP3/caspase-1/gasdermin D-induced inflammasome activation and hair cell pyroptosis [published online ahead of print, 2022 Jun 21]. Mol Immunol. 2022;149:66-76. doi:10.1016/j.molimm.2022.06.006.
9. Li Y, Liu S, Teng Q, Gong S, Liu K. A method for constructing a mouse model of congenital hearing loss by bilateral cochlear ablation. J Neurosci Methods. 2022;378:109641. doi:10.1016/j.jneumeth.2022.109641.
10. Liu K, Sun W, Zhou X, Bao S, Gong S, He DZ. Editorial: Hearing Loss and Cognitive Disorders. Front Neurosci. 2022;16:902405. Published 2022 May 16. doi:10.3389/fnins.2022.902405.
11. Guo R, Xu Y, Xiong W, et al. Autophagy-Mediated Synaptic Refinement and Auditory Neural Pruning Contribute to Ribbon Synaptic Maturity in the Developing Cochlea. Front Mol Neurosci. 2022;15:850035. Published 2022 Mar 4. doi:10.3389/fnmol.2022.850035.
12. Zhang L, Du Z, He L, Liang W, Liu K, Gong S. ROS-Induced Oxidative Damage and Mitochondrial Dysfunction Mediated by Inhibition of SIRT3 in Cultured Cochlear Cells. Neural Plast. 2022;2022:5567174. Published 2022 Jan 19. doi:10.1155/2022/5567174.
13. He L, Wang GP, Guo JY, Chen ZR, Liu K, Gong SS. Epithelial-Mesenchymal Transition Participates in the Formation of Vestibular Flat Epithelium. Front Mol Neurosci. 2021;14:809878. Published 2021 Dec 17. doi:10.3389/fnmol.2021.809878.
14. Liang W, Zhao C, Chen Z, Yang Z, Liu K, Gong S. Sirtuin-3 Protects Cochlear Hair Cells Against Noise-Induced Damage via the Superoxide Dismutase 2/Reactive Oxygen Species Signaling Pathway. Front Cell Dev Biol. 2021;9:766512. Published 2021 Nov 18. doi:10.3389/fcell.2021.766512.
15. Qi Y, Gong S, Liu K, Song Y. The c.824C>A and c.616dupA mutations in the SLC17a8 gene are associated with auditory neuropathy and lead to defective expression of VGluT3. Neuroreport. 2021;32(11):949-956. doi:10.1097/WNR.0000000000001687.
16. QQi Y, Xiong W, Yu S, et al. Deletion of C1ql1 Causes Hearing Loss and Abnormal Auditory Nerve Fibers in the Mouse Cochlea. Front Cell Neurosci. 2021;15:713651. Published 2021 Aug 25. doi:10.3389/fncel.2021.713651.
17. Guo R, Li Y, Liu J, Gong S, Liu K. Complete Elimination of Peripheral Auditory Input Before Onset of Hearing Causes Long-Lasting Impaired Social Memory in Mice. Front Neurosci. 2021;15:723658. Published 2021 Jul 27. doi:10.3389/fnins.2021.723658.
18. Zhang W, Peng Z, Yu S, et al. Loss of Cochlear Ribbon Synapse Is a Critical Contributor to Chronic Salicylate Sodium Treatment-Induced Tinnitus without Change Hearing Threshold. Neural Plast. 2020;2020:3949161. Published 2020 Jul 25. doi:10.1155/2020/3949161.
19. Xiong W, Yu S, Liu K, Gong S. Loss of cochlear ribbon synapses in the early stage of aging causes initial hearing impairment. Am J Transl Res. 2020;12(11):7354-7366. Published 2020 Nov 15.
20. Feng S, Yang L, Hui L, et al. Long-term exposure to low-intensity environmental noise aggravates age-related hearing loss via disruption of cochlear ribbon synapses. Am J Transl Res. 2020;12(7):3674-3687. Published 2020 Jul 15.
21. Wei W, Shi X, Xiong W, et al. RNA-seq Profiling and Co-expression Network Analysis of Long Noncoding RNAs and mRNAs Reveal Novel Pathogenesis of Noise-induced Hidden Hearing Loss. Neuroscience. 2020;434:120-135. doi:10.1016/j.neuroscience.2020.03.023.
22.Han S, Du Z, Liu K, Gong S. Nicotinamide riboside protects noise-induced hearing loss by recovering the hair cell ribbon synapses. Neurosci Lett. 2020;725:134910. doi:10.1016/j.neulet.2020.134910.
23. Guo B, Guo Q, Wang Z, et al. D-Galactose-induced oxidative stress and mitochondrial dysfunction in the cochlear basilar membrane: an in vitro aging model. Biogerontology. 2020;21(3):311-323. doi:10.1007/s10522-020-09859-x.
24. Xiong W, Wei W, Qi Y, et al. Autophagy is Required for Remodeling in Postnatal Developing Ribbon Synapses of Cochlear Inner Hair Cells. Neuroscience. 2020;431:1-16. doi:10.1016/j.neuroscience.2020.01.032.
25. He L, Guo JY, Qu TF, et al. Cellular origin and response of flat epithelium in the vestibular end organs of mice to Atoh1 overexpression. Hear Res. 2020;391:107953. doi:10.1016/j.heares.2020.107953.
26. Zhang W, Peng Z, Yu S, et al. Exposure to sodium salicylate disrupts VGLUT3 expression in cochlear inner hair cells and contributes to tinnitus. Physiol Res. 2020;69(1):181-190. doi:10.33549/physiolres.934180.
27. Luo Y, Qu T, Song Q, et al. Repeated Moderate Sound Exposure Causes Accumulated Trauma to Cochlear Ribbon Synapses in Mice. Neuroscience. 2020;429:173-184. doi:10.1016/j.neuroscience.2019.12.049.
28. Du ZD, Han SG, Qu TF, et al. Age-related insult of cochlear ribbon synapses: An early-onset contributor to D-galactose-induced aging in mice. Neurochem Int. 2020;133:104649. doi:10.1016/j.neuint.2019.104649.
29. Li S, Yu S, Ding T, et al. Different patterns of endocytosis in cochlear inner and outer hair cells of mice. Physiol Res. 2019;68(4):659-665. doi:10.33549/physiolres.934009.
30. Qu T, Qi Y, Yu S, et al. Dynamic Changes of Functional Neuronal Activities Between the Auditory Pathway and Limbic Systems Contribute to Noise-Induced Tinnitus with a Normal Audiogram. Neuroscience. 2019;408:31-45. doi:10.1016/j.neuroscience.2019.03.054.
31. Yu SK, Du ZD, Song QL, et al. Morphological and Functional Evaluation of Ribbon Synapses at Specific Frequency Regions of the Mouse Cochlea. J Vis Exp. 2019;(147):10.3791/59189. Published 2019 May 10. doi:10.3791/59189.
32. Qi Y, Yu S, Du Z, et al. Long-Term Conductive Auditory Deprivation During Early Development Causes Irreversible Hearing Impairment and Cochlear Synaptic Disruption. Neuroscience. 2019;406:345-355. doi:10.1016/j.neuroscience.2019.01.065.
33. Du ZD, Yu S, Qi Y, et al. NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem Int. 2019;124:31-40. doi:10.1016/j.neuint.2018.12.008.
34. Du ZD, He L, Tu C, et al. Mitochondrial DNA 3,860-bp Deletion Increases with Aging in the Auditory Nervous System of C57BL/6J Mice. ORL J Otorhinolaryngol Relat Spec. 2019;81(2-3):92-100. doi:10.1159/000499475.
35. Du ZD, Wei W, Yu S, Song QL, Liu K, Gong SS. NADPH Oxidase 2-Mediated Insult in the Auditory Cortex of Zucker Diabetic Fatty Rats. Neural Plast. 2019;2019:3591605. Published 2019 Jul 30. doi:10.1155/2019/3591605.
中文
1. 刘珊,郭瑞,宋新雨,于倩茹,陈钟壡,梁文琦,腾琪,龚树生,柳柯.后半规管途径导入不同血清型腺相关病毒转染小鼠耳蜗内毛细胞的效果比较[J].首都医科大学学报.2022,43(04):517-524.
2. 杨紫荆,赵春丽,梁文琦,陈钟壡,柳柯,龚树生.线粒体去乙酰化蛋白SIRT3在噪声诱导隐匿性听力损伤中的作用[J].首都医科大学学报.2022,43(04):521-526.
3. 吴俪媛,郭瑞,柳柯,冀飞, 乔月华,时晰.氨基糖苷类抗生素在小鼠耳蜗毛细胞中的分布特征研究[J].中华耳科学杂志2022,20(03):445-451.
4. 罗扬拓,冯帅,姜学钧,龚树生,柳柯.听觉中枢可塑性与耳鸣发生机制的研究进展[J].临床耳鼻咽喉头颈外科杂志,2021,35(11):1038-1041.DOI:10.13201/j.issn.2096-7993.2021.11.017.
5. 韩曙光,杜政德,龚树生,柳柯.不同噪声暴露次数对C57小鼠听功能影响的研究[J].中华耳科学杂志,2022,20(01):107-110.
6. 梁文琦,柳柯,龚树生.Sirtuins家族在感音神经性聋发病机制中的作用研究[J].中华耳科学杂志,2021,19(06):977-981.
7. 柳柯,龚树生.隐匿性听力损失和耳蜗带状突触病变—对听觉损害与保护的新考量[J].中华耳科学杂志,2019,17(2):150-153.
8. 庞功采,孙毓晗,柳柯.隐匿性听力损失的临床特征、诱发因素和致病机制[J].中华耳科学杂志,2019,17(2):170-175.
9. 郭晓安,柯朝阳,柳柯,魏薇,施磊.100dB SPL白噪声暴露对小鼠耳蜗听神经髓鞘的影响[J].中华耳科学杂志,2019,17(2):191-197.
10. 王园园,孙毓晗,柳柯,孔婷婷.中-低强度噪声暴露对耳蜗带状突触的影响[J].中华耳科学杂志,2019,17(2):203-208.
11. 杜政德,宋青玲,韩曙光,柳柯,龚树生.D-半乳糖诱导的小鼠耳蜗带状突触损伤[J].中华耳科学杂志,2019,17(2):154-158.
12. 魏薇,杨丽辉,熊伟,柳柯,马秀岚,龚树生,杜政德.老年性聋小鼠耳蜗带状突触损伤特点及机制研究[J].中华耳科学杂志,2019,17(2):198-202.
13. 杜政德,熊伟,于树夔,柳柯,龚树生.罗布麻宁减轻D-半乳糖诱导的老化大鼠听皮层线粒体氧化损伤[J].中华耳科学杂志,2019,17(2):243-247.
文件上传中...